Abstract

Existing antenna and array systems for 60-GHz wireless personal area network communications suffer from inherent poor radiation at grazing angles. This limitation is overcome in this work with a highly integrated antenna module that combines both broadside and end-fire radiators in a single multilayer organic package. Liquid crystal polymer and Rogers RO3003 are used to implement a small form factor (12.5 mm × 10 mm × 1.3 mm) antenna architecture. The co-designed broadside and end-fire antennas are characterized and measured for operation in the 57-66-GHz frequency range. Measured boresight gains of 8.7 and 10.9 dBi are achieved for the broadside and end-fire antennas while maintaining 35-45-dB isolation between both antennas. The numerically estimated radiation efficiency is found to be 92.5% and 78.5% for the broadside and end-fire elements. These antennas are orthogonally polarized and suitable for frequency reuse. Integrated circuits are mounted inside recessed cavities to realize a fully active antenna module with beam switching or simultaneous radiation. To the best of our knowledge, this is the first publication of a single package multilayer integration of millimeter-wave active antennas with both azimuth and elevation coverage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call