Abstract
We propose a miniaturized wideband metasurface antenna for 60-GHz antenna-in-package applications. With the glass integrated passive device manufacturing technology, we introduce a coplanar-waveguide-fed (CPW-fed) ring resonator to characterize the material properties of the glass substrate. The proposed antenna is designed on a high dielectric constant glass substrate to achieve antenna miniaturization. Because of the existence of gaps between patch units compared with the conventional rectangular patch in the TM10 mode, the radiation aperture of this proposed antenna is reduced. Located right above the center feeding CPW-fed bow-tie slot, the metasurface patch is realized, supporting the TM10 mode and antiphase TM20 mode simultaneously to improve the bandwidth performance. Using a probe-based antenna measurement setup, the antenna prototype is measured, demonstrating a 10-dB impedance bandwidth from 53.3 to 67 GHz. At 60 GHz, the antenna gain measured is about 5 dBi in the boresight direction with a compact radiation aperture of 0.31λ×0.31λ0 and a thickness of 0.06λ0.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers of Information Technology & Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.