Abstract

In this paper, it is shown how a Leaky Integrate and Fire (LIF) neuron can be applied to solve non-linear pattern recognition problems. Given a set of input patterns belonging to K classes, each input pattern is transformed into an input signal, then the LIF neuron is stimulated during T ms and finally the firing rate is computed. After adjusting the synaptic weights of the neuron model, we expect that input patterns belonging to the same class generate almost the same firing rate and input patterns belonging to different classes generate firing rates different enough to discriminate among the different classes. At last, a comparison between a feed-forward neural network and the LIF neuron is presented when applied to solve non-linear problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.