Abstract
BackgroundThe integration of high-quality, genome-wide analyses offers a robust approach to elucidating genetic factors involved in complex human diseases. Even though several methods exist to integrate heterogeneous omics data, most biologists still manually select candidate genes by examining the intersection of lists of candidates stemming from analyses of different types of omics data that have been generated by imposing hard (strict) thresholds on quantitative variables, such as P-values and fold changes, increasing the chance of missing potentially important candidates.MethodsTo better facilitate the unbiased integration of heterogeneous omics data collected from diverse platforms and samples, we propose a desirability function framework for identifying candidate genes with strong evidence across data types as targets for follow-up functional analysis. Our approach is targeted towards disease systems with sparse, heterogeneous omics data, so we tested it on one such pathology: spontaneous preterm birth (sPTB).ResultsWe developed the software integRATE, which uses desirability functions to rank genes both within and across studies, identifying well-supported candidate genes according to the cumulative weight of biological evidence rather than based on imposition of hard thresholds of key variables. Integrating 10 sPTB omics studies identified both genes in pathways previously suspected to be involved in sPTB as well as novel genes never before linked to this syndrome. integRATE is available as an R package on GitHub (https://github.com/haleyeidem/integRATE).ConclusionsDesirability-based data integration is a solution most applicable in biological research areas where omics data is especially heterogeneous and sparse, allowing for the prioritization of candidate genes that can be used to inform more targeted downstream functional analyses.
Highlights
The integration of high-quality, genome-wide analyses offers a robust approach to elucidating genetic factors involved in complex human diseases
We focus on using desirability functions to integrate heterogeneous omics data corresponding to complex human diseases, integRATE can be applied to data sets from any phenotype, species, and data type
In total, our spontaneous preterm birth (sPTB) analyses integrated gene-based results from 10 omics studies (1 genomics, 4 transcriptomics, 4 epigenomics, and 1 proteomics; Table 1) and included data sets ranging from 422 genes [35] to 20,841 genes [42]
Summary
The integration of high-quality, genome-wide analyses offers a robust approach to elucidating genetic factors involved in complex human diseases. One integrative study design is to obtain diverse types of omics data from the same tissue samples or patient cohorts. A single type of omics data can be collected from a variety of tissue samples or patient cohorts, facilitating their horizontal integration across many samples, which can substantially increase the experiment’s power (Fig. 1a, top right). In both vertical and horizontal integration study designs, the availability of diverse types of omics data from the same samples enables the use of a variety of statistical integration approaches (Fig. 1a, bottom) [8]. Multi-staged integration uses multiple steps to first identify associations between different data types and identify associations between data types and the phenotype of interest [9], whereas meta-dimensional integration combines data simultaneously based on concatenation, transformation, or model building [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.