Abstract
In two previous papers, the study of partitions with short sequences has been developed both for its intrinsic interest and for a variety of applications. The object of this paper is to extend that study in various ways. First, the relationship of partitions with no consecutive integers to a theorem of MacMahon and mock theta functions is explored independently. Secondly, we derive in a succinct manner a relevant definite integral related to the asymptotic enumeration of partitions with short sequences. Finally, we provide the generating function for partitions with no sequences of length K and part exceeding N.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.