Abstract
Integrals in Hopf algebras are an essential tool in studying finite dimensional Hopf algebras and their action on rings. Over fields it has been shown by Sweedler that the existence of integrals in a Hopf algebra is equivalent to the Hopf algebra being finite dimensional. In this paper we examine how much of this is true Hopf algebras over rings. We show that over any commutative ring R that is not a field there exists a Hopf algebra H over R containing a non-zero integral but not being finitely generated as R-module. On the contrary we show that Sweedler's equivalence is still valid for free Hopf algebras or projective Hopf algebras over integral domains. Analogously for a left H-module algebra A we study the influence of non-zero left A#H-linear maps from A to A#H on H being finitely generated as R-module. Examples and application to separability are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.