Abstract

An integral equation approach to the weak-field asymptotic theory (WFAT) of tunneling ionization is developed. An integral representation for the exact partial amplitudes of ionization into parabolic channels is derived. The WFAT expansion for the ionization rate follows immediately from this relation. Integral representations for the coefficients in the expansion are obtained. The integrals accumulate where the ionizing orbital has large amplitude and are not sensitive to its behavior in the asymptotic region. Hence, these formulas enable one to reliably calculate the WFAT coefficients even if the orbital is represented by an expansion in Gaussian basis, as is usually the case in standard software packages for electronic structure calculations. This development is expected to greatly simplify the implementation of the WFAT for polyatomic molecules, and thus facilitate its growing applications in strong-field physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call