Abstract

This paper proposes a high resolution integral imaging system using a lens array composed of non-uniform decentered elemental lenses. One of the problems of integral imaging is the trade-off relationship between the resolution and the number of views. When the number of views is small, motion parallax becomes strongly discrete to maintain the viewing angle. In order to overcome this trade-off, the proposed method uses the elemental lenses whose size is smaller than that of the elemental images. To keep the images generated by the elemental lenses at constant depth, the lens array is designed so that the optical centers of elemental lenses may be located in the centers of elemental images, not in the centers of elemental lenses. To compensate optical distortion, new image rendering algorithm is developed so that undistorted 3D image may be presented with a non-uniform lens array. The proposed design of lens array can be applied to integral volumetric imaging, where display panels are layered to show volumetric images in the scheme of integral imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call