Abstract
During last decades, there has been a growing interest of decreasing the environmental impact generated by humans. This situation has been approached from different perspectives being the integral use of raw materials as one of the best alternatives. It was estimated that 3.7 × 109tonnes of agricultural residues are produced annually worldwide. Then, the integral use of feedstocks has been studied through the biorefinery concept. A biorefinery can be a promissory option for processing feedstocks in rural zones aiming to boost the techno-economic and social growth. However, many plants produced at small scale in rural zones without high industrial use contribute with residues usually not studied as raw materials for other processes. Cocoyam (Xanthosoma sagittifolium) is a plant grown extensively in tropical regions. Nigeria, China, and Ghana are the main producers with 1.3, 1.18, and 0.9 milliontonnes/year, respectively. In Colombia, there are no technified crops, but it is used where it is grown mainly as animal feed. This plant consists of leaves, stem, and a tuber but the use is generally limited to the leaves, discarding the other parts. These discarded parts have great potential (lignocellulose and starch). This work proposes different processing schemes using the parts of the plant to obtain value-added products, and their techno-economic and environmental assessment. The simulation was performed with Aspen Plus and the economic package was used for the economic assessment. For the environmental assessment, Waste Algorithm Reduction of the U.S. EPA was implemented. The obtained results showed that the integral use of plants under a biorefinery scheme allows obtaining better techno-economic and environmental performance and that small-scale biorefineries can be a promissory option for boosting rural zones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.