Abstract
Integral transform methods are a common tool employed to study the Hyers–Ulam stability of differential equations, including Laplace, Kamal, Tarig, Aboodh, Mahgoub, Sawi, Fourier, Shehu, and Elzaki integral transforms. This work provides improved techniques for integral transforms in relation to establishing the Hyers–Ulam stability of differential equations with constant coefficients, utilizing the Kamal transform, where we focus on first- and second-order linear equations. In particular, in this work, we employ the Kamal transform to determine the Hyers–Ulam stability and Hyers–Ulam stability constants for first-order complex constant coefficient differential equations and, for second-order real constant coefficient differential equations, improving previous results obtained by using the Kamal transform. In a section of examples, we compare and contrast our results favorably with those established in the literature using means other than the Kamal transform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.