Abstract

In this paper, a reduced-order observer-based integral sliding mode controller is designed for a class of interconnected descriptor systems. First, the observer matching condition is used to transform the interconnected descriptor system into an interconnected normal system. Based on the canonical form, a reduced-order observer is then designed to estimate the state variables of the interconnected descriptor system. In terms of the measurable output variables and the state variables of the proposed reduced-order observer, a sliding mode control scheme is developed to drive the state trajectories of the system to the sliding surface in a finite time and maintain a sliding motion thereafter. It is shown that at the existence of unknown matched disturbances, the proposed observer-based integral sliding mode control scheme can still ensure the asymptotic stability of the resultant closed-loop system. This is an obvious improvement of the existing observer-based sliding mode control methods in descriptor systems fields. Finally, an example is given to verify the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call