Abstract
Handling the internal parametric variations and the nonlinearities of the high rated wind energy conversion system (WECS) is remained among the main challenges to maximize the produced energy, ameliorate its quality and ensure its efficient integration on the grid. In this context, a robust integral sliding mode control (ISMC) with Lyapunov function is proposed to control the active and reactive powers of a doubly fed induction generator (DFIG) based wind turbine, and to assure high dynamic performances according to the wind speed variation. To operate around an optimal rotational speed, a robust MPPT algorithm with mechanical speed control based on artificial Neural Network Controller (ANNC) is presented in order to extract the maximum power. Thereafter, the robust integral SMC are replaced by Field Oriented Control (FOC_PI) for comparative purposes. The objective is to prove the best performances of the system obtained by the proposed control method in terms of the dynamic response, total harmonic distortion THD (%) of the injected current into the grid, the reference tracking ability, Overshoot (%), precision and robustness. The effectiveness and robustness of each control techniques has been implemented and tested under MATLAB/Simulink environment by using a 1.5 MW wind system model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.