Abstract

This paper addresses an integral sliding mode-based anti-disturbance control algorithm for a type of Markovian jump systems (MJSs), which are influenced by different types of mismatched disturbances. On one hand, as for those disturbances that can be modeled, the disturbance observer (DO) method is introduced to realize the dynamical estimation of disturbances. Based on this, both the integral sliding surface (ISS) and the composite anti-disturbance controller are proposed in succession for rejecting unknown disturbances and guaranteeing the stability of the controlled MJS. Meanwhile, the states of the controlled system are ensured to reach ISS within a finite time. In addition, the L1 performance index is given to attenuate the effects of bounded disturbances. The controller and observer gains can be computed by using convex optimization techniques. The satisfactory stochastic stability and dynamical tracking performance are both also proved. Finally, the simulation results effectively verify all of the required performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.