Abstract

Solutions of a homogeneous model equation of the Fokker--Planck--Kolmogorov type of a normal Markov process are consider. They are defined in $\{(t,x_1,\dots,x_n)\in\mathbb{R}^{n+1}|0<t\le T, -\infty<x_j<\infty, j\in\{1,\dots,n-1\}, x_n>0\}$ and for $x_n=0$ satisfy the homogeneous Dirichlet or Neumann conditions and relate to special weighted Lebesgue $L_p$-spaces $L_p^{k(\cdot,a)}$. The representation of such solutions in the form of Poisson integrals is established. The kernels of these integrals are the homogeneous Green's functions of the considered problems, and their densities belong to specially constructed sets $\Phi_p^a$ of functions or generalized measures. The results obtained will be used to describe solutions of the problems from spaces $L_p^{k(\cdot,a)}$. Thus, the well-known Eidelman-Ivasyshen approach will be implemented for the considered problems. According to this approach, if the initial data are taken from the set $\Phi_p^a$, then there is only one solution to the problem from the space $L_p^{k(\cdot,a)}$. It is represented as a Poisson integral. Conversely, for any solution from the space $L_p^{k(\cdot,a)}$ there is only one element $\varphi \in\Phi_p^a$ such that this solution can be represented as a Poisson integral with density $\varphi$. In this case, it becomes clear in what sense the initial condition is satisfied.

Highlights

  • Ñïåöiàëüíi âàãîâi ïðîñòîðèÎçíà÷èìî ñïåöiàëüíi âàãîâi ïðîñòîðè Φap, p ∈ [1, ∞], ôóíêöié ÷è óçàãàëüíåíèõ ìið φ, ÿêi, áóäó÷è âçÿòi çà ïî÷àòêîâi äàíi â (9), çàáåçïå÷óþòü êîðåêòíó ðîçâ'ÿçíiñòü òà iíòåãðàëüíå çîáðàæåííÿ ðîçâ'ÿçêiâ çàäà÷ (7), (8l), (9) ó ñiìåéñòâàõ âàãîâèõ Lp-ïðîñòîðiâ ôóíêöié, ÿêi ïðè |x| → ∞ ìàþòü åêñïîíåíöiàëüíèé ðiñò ìàêñèìàëüíîãî ïîðÿäêó 2 iç çàëåæíèì âiä t òèïîì

  • Ðîçãëÿäàþòüñÿ ðîçâ'ÿçêè îäíîðiäíîãî ìîäåëüíîãî ðiâíÿííÿ òèïó ÔîêêåðàÏëàíêà Êîëìîãîðîâà íîðìàëüíîãî ìàðêîâñüêîãî ïðîöåñó, ÿêi âèçíà÷åíi â îáëàñòi {(t, x1, . . . , xn) ∈ Rn+1|0 < t ≤ T, −∞ < xj < ∞, j ∈ {1, . . . , n − 1}, xn > 0}, ïðè xn = 0 çàäîâîëüíÿþòü îäíîðiäíi óìîâè Äiðiõëå àáî Íåéìàíà i íàëåæàòü äî ñïåöiàëüíèõ âàãîâèõ Lp-ïðîñòîðiâ Ëåáåãà

  • The well-known Eidelman-Ivasyshen approach will be implemented for the considered problems

Read more

Summary

Ñïåöiàëüíi âàãîâi ïðîñòîðè

Îçíà÷èìî ñïåöiàëüíi âàãîâi ïðîñòîðè Φap, p ∈ [1, ∞], ôóíêöié ÷è óçàãàëüíåíèõ ìið φ, ÿêi, áóäó÷è âçÿòi çà ïî÷àòêîâi äàíi â (9), çàáåçïå÷óþòü êîðåêòíó ðîçâ'ÿçíiñòü òà iíòåãðàëüíå çîáðàæåííÿ ðîçâ'ÿçêiâ çàäà÷ (7), (8l), (9) ó ñiìåéñòâàõ âàãîâèõ Lp-ïðîñòîðiâ ôóíêöié, ÿêi ïðè |x| → ∞ ìàþòü åêñïîíåíöiàëüíèé ðiñò ìàêñèìàëüíîãî ïîðÿäêó 2 iç çàëåæíèì âiä t òèïîì. 0 ≤ τ < t ≤ T, {x, ξ} ⊂ Rn. Âèêîðèñòîâóâàòèìåìî äëÿ ôóíêöié u : Π+(0,T ] → C ïðè êîæíîìó t ∈ [0, T ] òàêi âàãîâi íîðìè:. Ãîâîðèòèìåìî, ùî ôóíêöiÿ u : Π+(0,T ] → C íàëåæèòü äî ïðîñòîðó Lkp( ,a), ÿêùî u(t, ·) ∈ Lkp(t,a) äëÿ êîæíîãî t ∈ [0, T ] i sup ∥u(t, ·)∥kp(t,a) < ∞. ×åðåç Φa1 ïîçíà÷èìî ñóêóïíiñòü óñiõ óçàãàëüíåíèõ áîðåëüîâèõ ìið φ : B → C òàêèõ, ùî ôóíêöiÿ ν(A) = Ψ−1(0, x)dφ(x), A ∈ B, A íàëåæèòü äî ïðîñòîðó M. Âèêîðèñòîâóâàòèìåìî ùå òàêi ïðîñòîðè: W1a ïðîñòið óñiõ âèìiðíèõ çà Ëåáåãîì ôóíêöié η : Rn+ → C, äëÿ ÿêèõ ñêií÷åííîþ 1 íîðìà η(·)Ψ 1(T, ·)

Îñíîâíèé ðåçóëüòàò
Âèñíîâêè
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call