Abstract

Integral relations were used to predict interface film transfer coefficients for evaporation and condensation. According to these, all coefficients can be calculated for one-component systems, using the thermal resistivity and the enthalpy profile through the interface. The expressions were verified in earlier work using non-equilibrium molecular dynamics simulations for argon-like particles, which interacted with a short-range Lennard-Jones (LJ) spline potential, which becomes zero at about 1.7 times the LJ-diameter. In this paper we verify the validity of these relations for a long-range LJ spline potential which becomes zero at 2.5 times the diameter. In an earlier paper we have documented for this system that in particular the absolute heat of transfer becomes much larger than the value predicted by kinetic theory. This was not the case for the short-range potential. The findings are important for modelling of one-component phase transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.