Abstract
In this paper, a novel integral reinforcement learning (IRL)-based event-triggered adaptive dynamic programming scheme is developed for input-saturated continuous-time nonlinear systems. By using the IRL technique, the learning system does not require the knowledge of the drift dynamics. Then, a single critic neural network is designed to approximate the unknown value function and its learning is not subjected to the requirement of an initial admissible control. In order to reduce computational and communication costs, the event-triggered control law is designed. The triggering threshold is given to guarantee the asymptotic stability of the control system. Two examples are employed in the simulation studies, and the results verify the effectiveness of the developed IRL-based event-triggered control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.