Abstract

Solid particles are formulated in spray processes by atomization of a slurry or melt and successive solidification or drying of the droplets. The inter-correlations between the spray process conditions (atomizer types, raw material properties, operation conditions, etc.) and the powder product properties (particle size, morphology, structure, etc.) in spray processing of solid particles through integral process modelling and simulation are to be derived. A multiphase CFD-Continuum Model integrates different sub-process models dealing with various nozzle arrangements, liquid atomization, droplet spray, and particle consolidation phenomena. For quantitative descriptions of particle–droplet interactions in spray processes, particle–droplet collision model, and particle penetration model are developed based on numerical simulations. The integrative models are validated based on melt atomization process (two-phase) and spray process for composite-particle production (three-phase). The integral process model may be inverted to derive proper feed and process conditions for tailored particle production in a recursive design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.