Abstract

Ordinary differential equations having a first integral may be solved numerically using one of several methods, with the integral preserved to machine accuracy. One such method is the discrete gradient method. It is shown here that the order of the method can be bootstrapped repeatedly to higher orders of accuracy. The method is illustrated using the Henon–Heiles system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.