Abstract

The paper deals with the problems of approximation in a uniform metric of periodic functions of many variables by trigonometric polynomials, which are generated by linear methods of summation of Fourier series. Questions of asymptotic behavior of the upper bounds of deviations of linear operators generated by the use of linear methods of summation of Fourier series on the classes of periodic differentiable functions are studied in many works. Methods of investigation of integral representations of deviations of polynomials on the classes of periodic differentiable functions of real variable originated and received its development through the works of S.M. Nikol'skii, S.B. Stechkin, N.P.Korneichuk, V.K. Dzadik, A.I. Stepanets, etc. Along with the study of approximation by linear methods of classes of functions of one variable, are studied similar problems of approximation by linear methods of classes of functions of many variables. In addition to the approximative properties of rectangular Fourier sums, are studied approximative properties of other approximation methods: the rectangular sums of Valle Poussin, Zigmund, Rogozinsky, Favar. In this paper we consider the classes of \(\overline{\psi}\)-differentiable periodic functions of many variables, allowing separately to take into account the properties of partial and mixed \(\overline{\psi}\)-derivatives, and given by analogy with the classes of \(\overline{\psi}\)-differentiable periodic functions of one variable. Integral representations of rectangular linear means of Fourier series on classes of \(\overline{\psi}\)-differentiable periodic functions of many variables are obtained. The obtained formulas can be useful for further investigation of the approximative properties of various linear rectangular methods on the classes \(\overline{\psi}\)-differentiable periodic functions of many variables in order to obtain a solution to the corresponding Kolmogorov-Nikolsky problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call