Abstract
Integral-controlled particle swarm optimization (ICPSO) is an effective variant of particle swarm optimization (PSO) aiming to increase the population diversity. Due to the additional accelerator items, the behavior of ICPSO is more complex, and provides more chances to escaping from a local optimum than the standard version of PSO. However, many experimental results show the performance of ICPSO is not always well because of the particles' un-controlled movements. Therefore, a new variant, integral particle swarm optimization with dispersed accelerator information (IPSO-DAI) is designed to improve the computational efficiency. In IPSO-DAI, a predefined predicted velocity index is introduced to guide the moving direction. If the average velocity of one particle is superior to the index value, it will choice a convergent manner, otherwise, a divergent manner is employed. Furthermore, the choice of convergent manner or divergent manner for each particle is associated with its performance to fit different living experiences. Simulation results show the proposed variant is more effective than other three variants of particle swarm optimization especially for multi-modal numerical problems. The IPSO-DAI algorithm is also applied to directing the orbits of discrete chaotic dynamical systems by adding small bounded perturbations, and achieves the best performance among four different variants of PSO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.