Abstract

Our main goal is to introduce some integral-type generalizations of the cosine and sine equations for complex-valued functions defined on a group G that need not be abelian. These equations provide a joint generalization of many trigonometric type functional equations such as d’Alembert’s, Cauchy’s, Gajda’s, Kannappan’s and Van Vleck’s equations. We prove that the continuous solutions for the first type and the central continuous solutions for the second one of these equations can be expressed in terms of characters, additive maps and matrix elements of irreducible, 2-dimensional representations of the group G. So the theory is part of harmonic analysis on groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.