Abstract

The forces exerted on a body moving through a fluid depend strongly on the local dynamic processes and structures generated by the body motion, such as flow separation, vortices, etc. A detailed and quantitative understanding of the effects of these processes and structures on the instantaneous overall force characteristics is of fundamental significance, and may improve our capabilities for flow analysis and control. In the present study, some unconventional force expressions based on ‘derivative-moment transformations’, which can have a rich variety of forms for the same flow field, are used to provide better insight into local dynamics. In particular, we apply jointly three alternative unconventional force expressions to analyse two numerical solutions of unsteady and viscous circular-cylinder flows. The results confirm the exactness of the expressions and, more importantly, provide a unified understanding of the specific influence on the force of each individual flow structure at its different evolution stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.