Abstract

An integral equation model is developed for athermal solutions of flexible linear polymers with particular reference to good solvent conditions. Results from scaling theory are used in formulating form factors for describing the single chain structure, and the impact of solvent quality on the chain fractal dimension is accounted for. Calculations are performed within the stringlike implementation of the polymer reference interaction site model with blobs (as opposed to complete chains) treated as the constituent structural units for semidilute solutions. Results are presented for the second virial coefficient between polymer coils and the osmotic compressibility as functions of the chain length and polymer volume fraction, respectively. Findings from this model agree with results from scaling theory and experimental measurements, as well as with an earlier investigation in which self-avoiding chains were described using Gaussian form factors with a chain length and concentration-dependent effective statistical segment length. The volume fractions at the threshold for connectedness percolation are evaluated within a coarse-grained closure relation for the connectedness Ornstein-Zernike equation. Results from these calculations are consistent with the usual interpretation of the semidilute crossover concentration for model solutions of both ideal and swollen polymer coils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call