Abstract

A novel mathematical model of light scattering by an oriented monodisperse system of triaxial dielectric ellipsoids of complex index of refraction is presented. It is based on an integral equation solution to the scattering of a plane electromagnetic wave by a single triaxial dielectric ellipsoid. Both the position and the orientation of a single representative scatterer in a given coordinate system are considered arbitrary. A Monte Carlo simulation is developed to reproduce the diffraction pattern of a population of aligned ellipsoids. As an example of practical importance, light scattering by a population of erythrocytes subjected to intense shear stress is modeled. Agreement with experimental observations and the anomalous diffraction theory is illustrated. Thus a novel check of the electromagnetic basis of ektacytometry is provided. Furthermore, the versatility of the integral equation method, particularly in the advent of parallel processing systems, is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call