Abstract

An integral equation method for solving the eddy-current nondestructive evaluation problem of a flat, rectangular, near surface crack inside of a cylindrical hole in a conducting material is presented. The method involves expanding the Green’s tensor, the incoming field, and the jump in electric potential over the crack in suitable basis functions. Here, plane waves, cylindrical waves, and basis functions related to the Chebyshev polynomials, are used. The way of discretization in this method leads to a formulation where the scattering is defined by a scattering matrix, independent of the incoming field. This presents an advantage, when conducting numerical simulations, since the scattering matrix does not have to be recalculated for every probe position. The numerical calculations are straightforward to perform and model predictions are compared with finite element results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.