Abstract

Spectral deferred correction (SDC) methods for solving ordinary differential equations (ODEs) were introduced by Dutt, Greengard and Rokhlin (2000). It was shown in that paper that SDC methods can achieve arbitrary high order accuracy and possess nice stability properties. Their SDC methods are constructed with low order integrators, such as forward Euler or backward Euler, and are able to handle stiff and non-stiff terms in the ODEs. In this paper, we use high order Runge-Kutta (RK) integrators to construct a family of related methods, which we refer to as integral deferred correction (IDC) methods. The distribution of quadrature nodes is assumed to be uniform, and the corresponding local error analysis is given. The smoothness of the error vector associated with an IDC method, measured by the discrete Sobolev norm, is a crucial tool in our analysis. The expected order of accuracy is demonstrated through several numerical examples. Superior numerical stability and accuracy regions are observed when high order RK integrators are used to construct IDC methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.