Abstract
Abstract Integral constraints for momentum and energy impose restrictions on parameterizations of eddy potential vorticity (PV) fluxes. The impact of these constraints is studied for a wind-forced quasigeostrophic two-layer zonal channel model with variable bottom topography. The presence of a small parameter, given by the ratio of Rossby radius to the width of the channel, makes it possible to find an analytical/asymptotic solution for the zonally and time-averaged flow, given diffusive parameterizations for the eddy PV fluxes. This solution, when substituted in the constraints, leads to nontrivial explicit restrictions on diffusivities. The system is characterized by four dimensionless governing parameters with a clear physical interpretation. The bottom form stress, the major term balancing the external force of wind stress, depends on the governing parameters and fundamentally modifies the restrictions compared to the flat bottom case. While the analytical solution bears an illustrative character, it helps to see certain nontrivial connections in the system that will be useful in the analysis of more complicated models of ocean circulation. A numerical solution supports the analytical study and confirms that the presence of topography strongly modifies the eddy fluxes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.