Abstract
The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs, which can be characterized by their vertex count n and a set D of divisors of n in such a way that they have vertex set Z n and edge set { { a , b } : a , b ∈ Z n , gcd ( a - b , n ) ∈ D } . Using tools from convex optimization, we analyze the maximal energy among all integral circulant graphs of prime power order p s and varying divisor sets D . Our main result states that this maximal energy approximately lies between s ( p - 1 ) p s - 1 and twice this value. We construct suitable divisor sets for which the energy lies in this interval. We also characterize hyperenergetic integral circulant graphs of prime power order and exhibit an interesting topological property of their divisor sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.