Abstract

Integral-based event-triggered synchronization criteria are firstly presented for networked chaotic systems with proportional-derivative (PD) control. The event-triggered scheme effectively utilizes network resources; however, the PD-type control subject to the conventional triggering inequality may cause excessive triggering and have difficulty in obtaining a feasible solution. To solve these problems, the integrated event-triggering inequality is employed and the modified integral inequality with free-weighting matrix is proposed to fill the empty diagonal terms, which overcomes the difficulties of the integration of delayed signal vectors upon integral event-triggering condition. Based on Lyapunov stability, the synchronization criteria are derived as linear matrix inequalities. Finally, the effectiveness of the integral-based event-triggered synchronization method is demonstrated by numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call