Abstract
A new robust tracking control approach is proposed for strict-feedback nonlinear systems with state and input constraints. The constraints are tackled by extending the control input as an extended state and introducing an integral barrier Lyapunov function (IBLF) to each step in a backstepping procedure. This extends current research on barrier Lyapunov functions(BLFs)-based control for nonlinear systems with state constraints to IBLF-based control for strict-feedback nonlinear systems with state and input constraints. Since the IBLF allows the original constraints to be mixed with the error terms, the use of IBLF decreases conservatism in barrier Lyapunov functions-based control. In the backstepping procedure, neural networks (NNs) with projection modifications are applied to estimate system uncertainties, due to their ability in guaranteeing estimators in a given bounded area. To facilitate the use of the once-differentiable NNs estimators in the backstepping procedure, the virtual controllers are passed through command filters. Finally, simulation results are presented to illustrate the feasibility and effectiveness of the proposed control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.