Abstract

The missile integrated guidance and control (IGC) problem with seeker’s asymmetric field-of-view (FOV) angle constraints is addressed. In the introduced model, the fin deflections controller is used to drive the body line-of-sight angle rate, which avoids the solving and tracking of aerodynamic angles in traditional IGC method. A novel fixed-time convergence virtual input based on the integral barrier Lyapunov function is designed to ensure the asymmetric FOV angle constraints are never violated. The virtual input is tracked by a new proposed pre-defined fixed time controller with adjustable initial convergence speed. The lumped uncertainty including aerodynamic coefficient and target maneuvering is coped by the fixed-time disturbance observer. It is proved that the closed-loop system states are converged to the bounded region in a fixed-time and the asymmetric FOV angle constraints are satisfied. The 6-degree of freedom flight simulations and comparisons verified the advantages of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.