Abstract

We construct the class of integrable classical and quantum systems on the Hopf algebras describing n interacting particles. We obtain the general structure of an integrable Hamiltonian system for the Hopf algebra A(g) of a simple Lie algebra g and prove that the integrals of motion depend only on linear combinations of k coordinates of the phase space, 2·ind g≤k≤g·ind g, whereind g andg are the respective index and Coxeter number of the Lie algebra g. The standard procedure of q-deformation results in the quantum integrable system. We apply this general scheme to the algebras sl(2), sl(3), and o(3, 1). An exact solution for the quantum analogue of the N-dimensional Hamiltonian system on the Hopf algebra A(sl(2)) is constructed using the method of noncommutative integration of linear differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.