Abstract

A map of a Riemannian manifold into an euclidian space is said to be transnormal if its restrictions to neighbourhoods of regular level sets are integrable Riemannian submersions. Analytic transnormal maps can be used to describe isoparametric submanifolds in spaces of constant curvature and equifocal submanifolds with flat sections in simply connected symmetric spaces. These submanifolds are also regular leaves of singular Riemannian foliations with sections. We prove that regular level sets of an analytic transnormal map on a real analytic complete Riemannian manifold are equifocal submanifolds and leaves of a singular Riemannian foliation with sections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.