Abstract
We study a problem in associative rings of left and right factorization of a polynomial differential operator regarded as an evolution operator. In a direct sum of rings, the polynomial arising in the problem of dividing an operator by an operator for two commuting operators leads to a time-dependent left/right Darboux transformation based on an intertwining relation and either Miura maps or generalized Burgers equations. The intertwining relations lead to a differential equation including differentiations in a weak sense. In view of applications to operator problems in quantum and classical mechanics, we derive the direct quasideterminant or dressing chain formulas. We consider the transformation of creation and annihilation operators for specified matrix rings and study an example of the Dicke model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.