Abstract
In this present communication, the integrable modulation problem has been applied to study parametric extension of the Kapitza rotating shaft problem, which is a prototypical example of curl force as formulated by Berry and Shukla in (JPA 45:305201, 2012) associated with simple saddle potential. The integrable modulation problems yield parametric time-dependent integrable systems. The Hamiltonian and first integrals of the linear and nonlinear parametric Kapitza equation (PKE) associated with simple and monkey saddle potentials have been given. The construction has been illustrated by choosing $$ \omega (t)=a +b\cos t$$ and that maps to Mathieu-type equations, which yield Mathieu extension of PKE. We study the dynamics of these equations. The most interesting finding is the mixed mode of particle trapping and escaping via the heteroclinic orbits depicted with the parametric Mathieu–Kapitza equation, which are absent in the case of nonparametric cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.