Abstract

We find an integrable generalization of the BCS model with nonuniform Coulomb and pairing interaction. The Hamiltonian is integrable by construction since it is a functional of commuting operators; these operators, which therefore are constants of motion of the model, contain the anisotropic Gaudin Hamiltonians. The exact solution is obtained diagonalizing them by means of Bethe ansatz. Uniform pairing and Coulomb interaction are obtained as the "isotropic limit" of the Gaudin Hamiltonians. We discuss possible applications of this model to a single grain and to a system of few interacting grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.