Abstract

Two integrable U(1)-invariant peakon equations are derived from the NLS hierarchy through the tri-Hamiltonian splitting method. A Lax pair, a recursion operator, a bi-Hamiltonian formulation, and a hierarchy of symmetries and conservation laws are obtained for both peakon equations. These equations are also shown to arise as potential flows in the NLS hierarchy by applying the NLS recursion operator to flows generated by space translations and U(1)-phase rotations on a potential variable. Solutions for both equations are derived using a peakon ansatz combined with an oscillatory temporal phase. This yields the first known example of a peakon breather. Spatially periodic counterparts of these solutions are also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.