Abstract

We construct integrable hierarchies of flows for curves in centroaffine ${\mathbb R}^3$ through a natural pre-symplectic structure on the space of closed unparametrized starlike curves. We show that the induced evolution equations for the differential invariants are closely connected with the Boussinesq hierarchy, and prove that the restricted hierarchy of flows on curves that project to conics in ${\mathbb{RP}}^2$ induces the Kaup-Kuperschmidt hierarchy at the curvature level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.