Abstract

We study an integrable Floquet quantum system related to lattice statistical systems in the universality class of dense polymers. These systems are described by a particular non-unitary representation of the Temperley-Lieb algebra. We find a simple Lie algebra structure for the elements of Temperley-Lieb algebra which are invariant under shift by two lattice sites, and show how the local Floquet conserved charges and the Floquet Hamiltonian are expressed in terms of this algebra. The system has a phase transition between local and non-local phases of the Floquet Hamiltonian. We provide a strong indication that in the scaling limit this non-equilibrium system is described by the logarithmic conformal field theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.