Abstract
ABSTRACTIn this paper, we study the generalized coupled integrable dispersionless (GCID) equations and construct two integrable discrete analogues including a semi-discrete system and a full-discrete one. The results are based on the relations among the GCID equations, the sine-Gordon equation and the two-dimensional Toda lattice equation. We also present the N-soliton solutions to the semi-discrete and fully discrete systems in the form of Casorati determinant. In the continuous limit, we show that the fully discrete GCID equations converge to the semi-discrete GCID equations, then further to the continuous GCID equations. By using the integrable semi-discrete system, we design two numerical schemes to the GCID equations and carry out several numerical experiments with solitons and breather solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.