Abstract

We propose the notion of integrable boundary in the context of discrete integrable systems on quad-graphs. The equation characterizing the boundary must satisfy a compatibility equation with the one characterizing the bulk that we called the three-dimensional (3D) boundary consistency. In comparison to the usual 3D consistency condition which is linked to a cube, our 3D boundary consistency condition lives on a half of a rhombic dodecahedron. The We provide a list of integrable boundaries associated to each quad-graph equation of the classification obtained by Adler, Bobenko and Suris. Then, the use of the term "integrable boundary" is justified by the facts that there are B\"acklund transformations and a zero curvature representation for systems with boundary satisfying our condition. We discuss the three-leg form of boundary equations, obtain associated discrete Toda-type models with boundary and recover previous results as particular cases. Finally, the connection between the 3D boundary consistency and the set-theoretical reflection equation is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.