Abstract

This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group $G$, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a $k$-dimensional geometry, such that the gauge group $H$ acts transitively on an $\ell$-manifold, determines a $(k+\ell)$-dimensional geometry ($k+\ell\leqslant4$) fibering over the $k$-dimensional geometry with $H$ as a structure group. In the case of an $\ell$-dimensional group $H$ acting on itself by the regular representation, all $(k+\ell)$-dimensional geometries with symmetry group $H$ are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the ${\rm SU}(\infty)$ Toda and dKP equations via a hodograph transformation. In two dimensions, the ${\rm Diff}(S^1)$ Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the ${\rm SDiff}(\Sigma^2)$ Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.