Abstract

Gardner model describes certain nonlinear elastic structures, ion-acoustic waves in plasmas, and shear flows in ocean and atmosphere. In this paper, by virtue of the computerized symbolic computation, the integrability of a generalized (2+1)-dimensional variable-coefficient Gardner model is investigated. Painlevé integrability conditions are derived among the coefficient functions, which reduce all the coefficient functions to be proportional only to γ(t), the coefficient of the cubic nonlinear term u(2)u(x). Then, an independent transformation of the variable t transforms the reduced γ(t)-dependent equation into a constant-coefficient integrable one. Painlevé test shows that this is the only case when our original generalized (2+1)-dimensional variable-coefficient Gardner model is integrable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call