Abstract

Let $G = N \rtimes A$, where $N$ is a graded group and $A = \mathbb{R}^+$ acts on $N$ via homogeneous dilations. The quasi-regular representation $\pi = \mathrm{ind}_A^G (1)$ of $G$ can be realised to act on $L^2 (N)$. It is shown that for a class of analysing vectors the associated wavelet transform defines an isometry from $L^2 (N)$ into $L^2 (G)$ and that the integral kernel of the corresponding orthogonal projector has polynomial off-diagonal decay. The obtained reproducing formula is instrumental for proving decomposition theorems for function spaces on nilpotent Lie groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.