Abstract

This paper deals with the problems of integrability and linearizable conditions at degenerate singular point in a class of quasianalytic septic polynomial differential system. We solve the problems by an indirect method, that is, we transform the quasianalytic system into an analytic system firstly, and the degenerate singular point into an elementary singular point. Then we calculate the singular values at the origin of the analytic system by the known classical methods. We obtain the center conditions and isochronous center conditions. Accordingly, integrability and pseudolinearizable conditions at degenerate singular point in the quasianalytic system are obtained. Especially, when λ = 1, the system has been studied in Wu and Zhang (2010).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.