Abstract
We consider the Becchi, Rouet, Stora and Tyutin (BRST) invariant effective action of the non-abelian BF topological theory in two dimensions with gauge group . By considering different gauge fixing conditions, the zero-curvature field equation gives rise to several well known integrable equations. We prove that each integrable equation together with the associated ghost field evolution equation, obtained from the BF theory, is a BRST invariant system with an infinite sequence of BRST invariant conserved quantities. We construct explicitly the systems and the BRST transformation laws for the Korteweg-de Vries (KdV) sequence (including the KdV, mKdV and CKdV equations) and Harry Dym integrable equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.