Abstract

Even though the integer quantum Hall transition has been investigated for nearly four decades its critical behavior remains a puzzle. The best theoretical and experimental results for the localization length exponent $\nu$ differ significantly from each other, casting doubt on our fundamental understanding. While this discrepancy is often attributed to long-range Coulomb interactions, Gruzberg et al. [Phys. Rev. B 95, 125414 (2017)] recently suggested that the semiclassical Chalker-Coddington model, widely employed in numerical simulations, is incomplete, questioning the established central theoretical results. To shed light on the controversy, we perform a high-accuracy study of the integer quantum Hall transition for a microscopic model of disordered electrons. We find a localization length exponent $\nu=2.58(3)$ validating the result of the Chalker-Coddington network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call