Abstract
We study two-component (or pseudospin-1/2) Bose gases in a strong synthetic magnetic field. Using exact diagonalization, we show that a bosonic analog of an integer quantum Hall state with no intrinsic topological order appears at the total filling factor ν=1+1 when the strengths of intracomponent and intercomponent interactions are comparable with each other. This provides a prime example of a symmetry-protected topological phase in a controlled setting of quantum gases. The real-space entanglement spectrum of this state is found to be comprised of counterpropagating chiral modes consistent with the edge theory derived from an effective Chern-Simons theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.