Abstract
We investigate the maximum induced matching problem (MIM), which is the problem of finding an induced matching having the largest cardinality on an undirected graph. The problem is known to be NP-hard for general graphs. We first propose a vertex-based integer programming formulation for MIM, which is more compact compared to an edge-based formulation found in the literature. We also introduce the maximum weight induced matching problem (MWIM), which generalizes MIM so that vertices and edges have weights. We adapt the edge-based formulation to MWIM, and propose a quadratic programming formulation of MWIM based on our vertex-based formulation. We then linearize our quadratic programming formulation, and devise a Benders decomposition algorithm that exploits a special structure of the linearized formulation. We also propose valid inequalities and formulation tightening procedures to improve the efficiency of our approach. Our computational tests on a large suite of randomly generated graphs show that our vertex-based formulation and decomposition approach significantly improve the solvability of MIM and MWIM, especially on dense graphs. The online appendix and data are available at https://doi.org/10.1287/ijoc.2017.0764 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.