Abstract
Structural approximation theory seeks to provide a framework for expressing optimization problems and isolating structural or syntactic conditions that explain the apparent difference in the approximation properties of different NP-optimization problems. In this paper, we initiate a study of structural approximation using integer programming (an optimization problem in its own right) as a general framework for expressing optimization problems. We isolate three classes of constant-approximable maximization problems, based on restricting appropriately the syntactic form of the integer programs expressing them. The first of these classes subsumes MaxΣ1, which is the syntactic version of the well-studied class MaxNP. Moreover, by allowing variables to take on not just 0/1 values but rather values in a polylogarithmic or polynomial range, we obtain syntactic maximization classes that are polylog-approximable and poly-approximable, respectively. The other two classes contain problems, such as MaxMatching, for which no previous structural explanation of approximability has been found. We also investigate structurally defined classes of integer programs for minimization problems and show a difference between their maximization counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.